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Abstract

This study deals with free vibration of folded structures and box beams made of composite materials
using a four-noded Lagrangian and Hermite finite element that incorporates high order transverse shear
deformation and rotary inertia. An 8� 8 matrix is assembled to transform the system element matrices
from the local to global co-ordinates, in which an eighth drilling degree of freedom (d.o.f.) per node is
appended to the existing 7-d.o.f. system. The results obtained are in good agreement with the semi-
analytical solutions and numerical results reported by other investigators. Sample studies are carried out for
various layup configurations and boundary conditions. The significance of the high order plate theory in
analyzing folded structures is enunciated in this paper.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Folded plates or box members offer a broad range of structural engineering applications such
as culverts, ship hulls, buildings, and box girder bridges. With the advancement of technology in
fiber-reinforced composite materials, the applicability of composites to such members has been
increased significantly due to their merits such as low density, high stiffnesses and high strengths.
Structural behavior of folded isotropic plates has been studied previously by a host of

investigators using a variety of approaches. Goldberg and Leve [1] developed a method based on
elasticity, which was subsequently modified and applied by De Fries-Skene and Scordelis [2]. The
methods in this category are common because of their superb computational accuracy. However,
it is difficult to apply these methods directly to folded plates or to dynamic problems, so that they
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have been extended by other investigators to deal with those problems. For example, Scordelis [3]
and Chu and Dudnik [4] analyzed simply supported box bridges using a similar technique.
Cheung [5] introduced the finite strip method for analyzing folded prismatic plates and box
girders. Liu and Huang [6] solved the problems for one- and two-folded plates using a finite
element-transfer matrix method. Zienkiewicz and Taylor [7] presented a flat shell technique which
can be applied directly to folded plates. Dynamic problems are also tackled by many investigators.
For example, Irie et al. [8] calculated the natural frequencies of folded cantilever plates using the
Ritz method. Danial [9] introduced a concept referred to as spectral element method. Lee et al.
[10] analyzed the dynamic response of a prestressed concrete box girder bridge subjected to
moving loads using folded plate elements.
All these works are limited, in that they can analyze only the structural members made of

isotropic materials. Recently, techniques for analyzing anisotropic plates are evolved. Suresh and
Malhotra [11] studied the free vibration of damped composite box beams using four-node plate
elements with five degrees of freedom (d.o.f.) per node. Niyogi et al. [12] carried out a finite
element vibration analysis of folded laminates using a first order plate theory (FOPT). In general,
a first order shear deformation theory can describe easily and accurately the kinematic behavior of
a flat composite plate [13]. However, it requires an estimation of shear correction factors; a value
of K ¼ 5

6
is normally used [14]. On the other hand, a high order plate theory (HOPT) is free from

such requirements and thus can yield more accurate results for both static and dynamic conditions
than those of the first order theories. This allows for convenient use of HOPT. Many high order
theories exist but they are mostly applicable to unfolded (flat) isotropic or anisotropic plates at the
present time [15–18]. In this paper, the existing HOPT are extended to study free vibration of
folded and box structures made of composite materials.

2. Theoretical formulation

The HOPT for analyzing unfolded laminates reviewed in this study is derived from the third
order laminate formulation of Reddy [13]. To analyze folded anisotropic structures, we introduce
a modified displacement finite element model using non-conforming elements of 8-d.o.f.
(including the drilling degree of freedom) per node.

2.1. High order plate theory

The HOPT presented in this paper is based on the same assumptions as those of the classical
and first order plate theories, except that we no longer assume that the straight lines normal to the
middle surface remain straight after deformation but it is assumed that they can be expressed in
the form of a cubic equation. Fig. 1 shows schematically the deformation kinematics of the three
different models. The displacement field for the HOPT now can be expressed as [13]

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zfxðx; y; tÞ � c1z
3ðfx þ c0w0;xÞ;

vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zfyðx; y; tÞ � c1z
3ðfy þ c0w0;yÞ;

wðx; y; z; tÞ ¼ w0ðx; y; z; tÞ; ð1Þ
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where u0; v0 and w0 are the mid-plane displacements in the x; y and z directions, fx and fy are the
rotations, and c0 and c1 are the parameters referred to as tracers. The condition c0 ¼ 1;fx ¼
�w0;x and fy ¼ �w0;y in Eq. (1) yields the same displacement field as that of the classical
lamination theory (CLPT). The displacement field becomes identical to that of FOPT for c1 ¼ 0:
Note that c0 ¼ 1 for HOPT.
The equations of motion for the HOPT are derived using the principle of virtual displacements.

The following Euler–Lagrange equations can be obtained using the calculus of variations [13]:
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Fig. 1. Assumed deformation of a straight line normal to the middle surface of a plate for (a) classical laminated plate

theory (CLPT), (b) first order plate theory (FOPT), and (c) high order plate theory (HOPT).
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where Nij are the normal ði ¼ jÞ and shear ðiajÞ force resultants, %Mij are the moment resultants,
%Qij are the transverse force resultants, q is the distributed load, and

%Mab ¼ Mab � c1Pab; %Qa ¼ Qa � c2Ra; ð3Þ

Ii ¼
Xm

k¼1

Z zkþ1

zk

rðkÞzi dz ði ¼ 0; 1; 2;y; 6Þ; ð4Þ

Ji ¼ Ii � c1Ii þ 2; K2 ¼ I2 � 2c1I4 þ c21I6; c1 ¼
4

3h2
; c2 ¼ 3c1; ð5Þ

where m is the number of layers, rðkÞ is the mass density of the kth layer, h is the wall thickness,
and ðPxx;Pyy;PxyÞ and ðRx;RyÞ denote the higher order resultants, given, respectively, as
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The resultants are related to the strains by the relationships
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where eð0Þ are the membrane strains, eð1Þ are the curvatures, eð3Þ are the high order strains, and gð0Þ

and gð2Þ are the transverse shear strains and their high order terms, respectively. The stiffnesses in
Eqs. (7) and (8) are given in terms of the layer stiffnesses %Q

ðkÞ
ij of the kth layer and the positions of

the top and bottom faces of the kth layer zkþ1 and zk as

ðAij;Bij ;Dij ;Eij ;Fij;HijÞ ¼
Xn

k¼1

Z zkþ1

zk

%Q
ðkÞ
ij ð1; z; z2; z3; z4; z6Þ dz; i; j ¼ 1; 2; 6; ð9Þ

ðAij;Dij ;FijÞ ¼
Xn

k¼1

Z zkþ1

zk

%Q
ðkÞ
ij ð1; z2; z6Þ dz; i; j ¼ 4; 5: ð10Þ

Note that the stiffnesses Eij ;Fij and Hij consist of the terms whose orders are higher than cubic of
the plate thickness.
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2.2. Displacement finite element method

2.2.1. Unfolded plates

The model described by Eq. (2) is named the displacement finite element method by Reddy and
Phan [17], which requires the use of Lagrange interpolation of ðu0; v0;fx;fyÞ and Hermite
interpolation of w0: A non-conforming element for unfolded plates will thus have 7-d.o.f. per
node, i.e., u0; v0; w0; w0;x; w0;y; fx; and fy: The generalized displacements can be approximated
over an element Oe by the expressions

u0ðx; y; tÞ ¼
Xm

i¼1

ue
i ðtÞc

e
i ðx; yÞ; v0ðx; y; tÞ ¼

Xm

i¼1

ve
i ðtÞc

e
i ðx; yÞ;

w0ðx; y; tÞ ¼
Xm

i¼1

%De
i ðtÞj

e
i ðx; yÞ ð11Þ

and

fxðx; y; tÞ ¼
Xm

i¼1

X e
i ðtÞc

e
i ðx; yÞ; fyðx; y; tÞ ¼

Xm

i¼1

Y e
i ðtÞc

e
i ðx; yÞ; ð12Þ

where ce
i denote the Lagrange interpolation functions and je

i are the Hermite interpolation
functions. For the non-conforming elements, the three nodal values associated with w0 are
written as

%D1 ¼ w0; %D2 ¼
@w0

@x
; %D3 ¼

@w0

@y
: ð13Þ

These equations can be rewritten in compact form as

X5
b¼1

Xnb
j¼1

ðKab
ij Db

j þ M
ab
ij

.Db
j þ S

ab
ij D

b
j Þ � Fa

i ¼ 0; i ¼ 1; 2;y; na; ð14Þ

where a ¼ 1; 2; 3; 4; 5; n1 ¼ n2 ¼ n4 ¼ n5 ¼ 4; and n3 ¼ 12 for non-conforming elements, Db
j

denote the nodal values, K
ab
ij are the stiffness coefficients, M

ab
ij are the mass coefficients, and S

ab
ij

are the geometric stiffness coefficients, and Fa
i are the external forces, respectively.

2.2.2. Folded plates

It is known that a global stiffness matrix is singular and ill-conditioned because of the null
diagonal terms resulting from the drilling d.o.f. fz in the transformed element stiffness matrix. As
a result, it is not possible to obtain the shape function of the drilling d.o.f. induced by
transformation. To resolve this problem in a finite element analysis, we could insert an artificial
in-plane rotational angle or equivalently rotational stiffness coefficients. In our analysis, we add
an 8th drilling d.o.f. to the existing 7-d.o.f. system, as suggested by Lee et al. [10]. The
deformations of each element expressed in the local co-ordinates can be transformed into the
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loading co-ordinates using the following transformation relationship (see Fig. 2):
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or, in brief,

fug ¼ ½T 
fu0g; ð16Þ

where lij are the direction cosines between the global and local co-ordinates and ½T 
 is the
transformation matrix. The primed notations are used to denote the deformations in the local co-
ordinates.
The global stiffness matrix is then expressed as
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Fig. 2. Coordinate transformation of a folded plate element.
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Note that ½K 
I and ½K
II are the real and artificial matrices consisting of 28� 28 and 4� 4
elements, respectively. Before applying the transformation, the 28� 28 matrix is reconstructed
into a 32� 32 matrix in order to accommodate the drilling d.o.f. fz for each element.
Transformation of the mass matrix is the same as that of the stiffness matrix, that is,

½ %M
 ¼ ½T 
T½ %M
0S½T 
: ð19Þ

For a free vibration, the equation of motion is written in the form

f½ %M
 � o2½ %K
g ¼ f0g: ð20Þ

In order to understand the dynamic behavior of a system, we often need to know only a few low
order eigenvalues of the system. In this study, the subspace iteration method [19] is adopted to
extract the eigenpairs representing the low order natural frequencies. This method selects a
subspace whose dimensions, determined by the desired number of eigenvalues to be obtained, are
the same as those of the entire matrix. Then, the Jacobi iteration method is carried out on the
selected matrix using the Ritz’s base vector as an initial vector. This method has the advantages to
effective memory management and computational efficiency as compared to other methods which
carry the entire matrix in the computation [19].

3. Numerical results

3.1. Flat and two-folded plates

The finite element formulation described earlier is now implemented to compare the results of
our technique with those published by other investigators and also to study the influences of high
order terms on the analysis of folded or box composite structures. Fig. 3 shows the dimensions
and boundary conditions of a composite box structure analyzed by the aforementioned theories
for the materials whose properties are listed in Table 1. Table 2 shows the normalized natural
frequencies of an unfolded antisymmetric cross-ply laminate (½0=90
n; L=h ¼ 5). The parallel edges
on the side of the plate are simply supported while we consider three different boundary
conditions for the other two edges of the same plate. As expected, the exact solutions and
numerical results obtained from this study are in good agreement with those reported by Reddy
[13]. On the other hand, the results obtained using different theories could be noticeably different
depending on the given boundary conditions.
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By contrast, the use of different theories make little differences for isotropic plates regardless of
folding conditions. The natural frequencies of unfolded (i.e., flat, a ¼ 180�) and two-folded
(channel, a ¼ 90�) isotropic plates are compared in Table 3. The non-dimensional frequencies of
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Table 1

Mechanical and physical properties of the materials used in this study

Material Source E1 E2 G12 G23 G13 n12 n21 r

Material I [13] 40E2 — 0.6E2 0.5E2 0.6E2 0.25 0.25 —

Material II [8] 10.92 10.92 4.2 4.2 4.2 0.30 0.30 1000

Material III [12] 60.70 24.80 12.0 12.0 12.0 0.23 0.23 1300

The units of E1;E2;G12;G23;G13 are GPa and that of r is kg=m3; respectively. Note that the properties of Material I are

normalized by E2:

Table 2

Normalized frequencies of an unfolded ½0=90
n antisymmetric cross-ply laminate made of Material I

Source Theory Solution Normalized frequency, o

F–S S–S C–C

Reddy [13] HOPT Exact 6.387 9.087 11.890

FEM 6.192 9.103 12.053

FOPT Exact 6.213 8.833 10.897

FEM 6.219 8.837 10.906

CLPT Exact 7.450 10.721 17.741

FEM 7.279 11.192 18.694

This study HOPT FEM 6.083 9.194 11.972

Letters F, S and C denote free, simply supported, and clamped conditions, respectively. L=h ¼ 5; o ¼ %oL2
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
=h:

Table 3

Normalized values of low order natural frequencies for free vibration of unfolded and folded isotropic plates made of

Material II

Folding angle Mode Normalized frequency, o

This study Niyogi et al. [12] Liu and Huang [6] Irie et al. [8]

a (HOPT) (FOPT) (CLPT) (CLPT)

180� I 0.0208 0.0200 0.0200 0.0201

(Flat plate) II 0.0504 0.0489 0.0492 0.0493

III 0.1272 0.1230 0.1235 0.1234

IV 0.1605 0.1567 0.1566 0.1577

V 0.1850 0.1784 0.1787 0.1796

90� I 0.1211 0.1249 0.1249 —

(Folded plate) II 0.1348 0.1252 0.1260 —

III 0.2561 0.2697 0.2579 —

IV 0.2869 0.2830 0.2892 —

V 0.3253 0.3266 0.3286 —

o ¼ %oL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� n2Þ=E

p
:
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the unfolded thin plate analyzed by the HOPT are slightly higher than the others because of the
small effects of the high order terms in Eqs. (7) and (8). However, in the case of thick plates
ðL=h > 10Þ; the frequencies obtained by the HOPT show the lowest values because of the
significant influences of the high order terms [13]. The complete analysis of these effects is beyond
the scope of this paper. For the folded plates, it is observed that both HOPT and FOPT give good
results with negligible differences between them. A free vibration analysis of a two-folded
cantilever plate made of E-glass/Epoxy composite is carried out for a folding angle a ¼ 90�: The
length L used in this study is 2:0 m and each fold length of the cantilever is L=3: Table 4 shows the
three lowest natural frequencies for various layup sequences. Note that a 6� 3 mesh of nine-node
quadratic elements (FOPT) is used by Niyogi et al. [12], while a 12� 6 mesh of non-conforming
elements (HOPT) is used in this study. The natural frequencies obtained by the HOPT are mostly
higher than those by the FOPT. The differences between the theories depend on many parameters
such as ply angles, number of layers, length-to-thickness ratio, and boundary conditions.

3.2. Box beams

Table 5 shows the normalized natural frequencies of cross-ply composite box beams with
clamped ends. It can be observed from the table that the frequencies of the ½0=90
n and ½0=90
2n

composites are higher than those of the ½0
n and ½0=90=0
n; and that the difference between those
of ½0=90
n and ½0=90
2n is negligible. It may also be observed that the natural frequency tends to
increase as the number of layers increases. Table 6 shows the normalized natural frequencies of
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Table 4

Natural frequencies of two-folded cantilever composite plate (Material III, L=h ¼ 50; o ¼ %oL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� n212Þ=E1

q
)

Angle orientation Normalized frequency, o

Ref. [12] (FOPT) This study (HOPT)

Mode I Mode II Mode III Mode I Mode II Mode III

½730
ns 0.0901 0.0989 0.2035 0.0925 0.1128 0.2057

½0=90
ns 0.0896 0.0934 0.2044 0.1055 0.1156 0.1990

½0=90
2n 0.0987 0.0993 0.1992 0.0982 0.1068 0.2008

½45=� 45=45
n 0.0914 0.1035 0.1988 0.0897 0.1102 0.2068

Table 5

Normalized natural frequencies of cross-ply composite box beams with clamped ends (Material I, L=h ¼ 10;
o ¼ %oL2

ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
=h)

Mode Normalized frequency, o

½0
n ½0=90
n ½0=90=0
n ½0=90
2n

I 13.884 20.401 17.609 20.918

II 15.130 23.098 18.951 23.419

III 26.870 25.651 25.273 25.891

IV 31.176 42.213 38.817 44.652
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symmetric angle-ply composite box beams with clamped ends. Note that the frequency in this case
is heavily dependent on the fiber orientation. Among these, the frequencies of the ½760
s
composites exhibit the highest values. We may conclude from these results that, in general, the
natural frequency of an angle-ply composite box beam is higher than that of a crossply laminate
for the same number of layers. Table 7 shows the natural frequencies of clamped and cantilever
box beams tabulated as a function of length-to-thickness ratio L=h (square box sections,
symmetric cross-ply laminates of ½0=90
s; Material I). It is known in general that the natural
frequency of a flat composite plate approaches asymptotically a constant value as the length-to-
thickness ratio increases, because the transverse shear deformation terms become negligibly small
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Table 6

Normalized natural frequencies of angle-ply composite box beams with clamped ends (Material I, L=h ¼ 10;
o ¼ %oL2

ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
=h)

Mode Normalized frequency, o

½730
s ½745
s ½760
s ½775
s

I 27.090 39.776 46.855 35.884

II 29.491 43.120 51.006 40.236

III 38.205 45.694 55.896 47.311

IV 47.081 56.526 59.162 62.427

Table 7

Normalized natural frequencies of clamped box structures for various values of L=h ratio

End condition Mode Normalized frequency, o

Length-to-thickness ratio, L=h

5 10 20 50 100

Clamped I 10.258 18.759 33.760 62.053 66.884

(8.175) (11.965) (14.235) (15.186) (15.350)

II 10.821 19.872 36.297 66.674 79.396

(9.221) (13.054) (15.526) (16.585) (16.770)

III 15.985 32.768 55.330 71.352 91.062

(11.968) (24.666) (35.850) (40.495) (41.553)

IV 22.305 44.026 65.249 75.258 95.457

(17.094) (27.188) (38.276) (41.854) (42.687)

Cantilever I 4.699 8.593 16.500 38.969 63.475

(1.937) (2.506) (2.543) (2.560) (2.562)

II 5.076 9.282 17.883 42.349 67.007

(3.029) (3.892) (4.060) (4.143) (4.159)

III 6.414 11.491 22.039 54.257 73.108

(5.676) (11.352) (15.066) (15.774) (15.897)

IV 12.218 21.504 33.379 57.907 75.678

(9.428) (13.324) (17.453) (18.356) (18.552)

The number shown in parentheses are the frequencies of unfolded plates (Material I, ½0=90
s; o ¼ %oL2
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
=hÞ:
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for thin laminates [14]. This behavior usually leads us to a conclusion that a simple FOPT is
sufficient to analyze unfolded structures. However, Table 7 suggests us that the influence of shear
terms may play certain roles in determining the structural behavior of folded or box structures. It
is easy to understand that the high order shear terms are signified by the sectional properties, e.g.,
the moment of inertia, even for the same wall thickness. The numbers shown in parentheses are
the frequencies of unfolded plates, in which the values approach a constant as the length-to-
thickness ratio increases, especially for high ratios L=h > 50: On the other hand, the frequency for
the box beam tends to increase sharply in the same range. We may not neglect the shear terms in
analyzing folded structures, for the contributions made by the high order terms could be
significant. The HOPT is thus used in our analysis to achieve better accuracy. The effects due to
the shear terms may be influenced by many factors. One of the most influencing factors is ply
orientation. Fig. 4 show the frequency of a box beam for various layup sequences. As shown in
the figure, the rate of convergence varies for different conditions. Although it is beyond the scope
of this paper, we may pay attention to the fact that the shear terms and their high order terms are
dependent on other factors such as the shape and material properties.
Fig. 5 shows the mode shapes of symmetric cross-ply box beams with clamped ends. Each figure

represents (a) symmetric vertical bending, (b) symmetric horizontal bending, (c) torsional, and (d)
antisymmetric horizontal bending modes, respectively. Also shown in Figs. 6 and 7 are the mode
shapes of ½0=90
s and ½745
s composite cantilever box beams. It is interesting to observe that the
cross-sectional shapes are distorted for the ½745
s angle-ply composite beam as shown in Fig. 7.
This is clearly due to the effect of shear coupling. The degree of distortion is determined by the ply
angle and the length-to-thickness ratio.

4. Summary and conclusion

A technique based on high order plate theory is developed to analyze the static and free-
vibration behavior of folded composite structures. It could be an attractive approach, not only
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(a) (b)

(c) (d)

Fig. 5. Mode shapes of the lowest modes for a ½0=90
s cross-ply composite box beam with clamped ends for L ¼ 20;
L=h ¼ 10: (a) Mode I; (b) Mode II; (c) Mode III; (d) Mode IV.

(a) (b)

(c) (d)

Fig. 6. Mode shapes of the lowest modes for a ½0=90
s cantilever composite box beam for L ¼ 20; L=h ¼ 10: (a) Mode I;

(b) Mode II; (c) Mode III; (d) Mode IV.
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because it is computationally efficient and accurate but also because we can avoid assuming shear
factors that is mandatory in FOPT. The technique is then implemented for folded and box beam
structures of various layup sequences and end conditions to compare the results obtained from
different theories (CLPT, FOPT, and HOPT). It is observed that the use of different theories
make little difference for isotropic plates regardless of folding conditions, but the difference
becomes significant for anisotropic composites, even for unfolded ones, depending on the layup
configuration and boundary conditions. For folded composites, e.g., channels or box beams, the
significance is even greater, because it is not only the properties of the materials but also the
sectional properties of the member that makes large contributions to the overall behavior of the
structure. It may be concluded from this study that the effect of transverse shear deformation,
largely governing the behavior of thick or folded composite structures, should not be neglected
and thus the high order plate theory should be used to analyze such structures for better accuracy.
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